

Конструирование признаков (feature engineering) и подготовка данных

- Очень часто, во многих задачах, данные не готовы к машинному обучению сначала их нужно очистить, а также подготовить более полезные признаки.
- В этом разделе мы возьмём большой набор данных для линейной регрессии, и подготовим его к проекту машинного обучения.

- Что такое конструирование признаков?
 - Это процесс применения знаний о предметной области, чтобы из сырых данных извлечь полезные признаки, используя техники обработки данных
 - Но как именно это делается?

- Три основных подхода:
 - Извлечение информации (extract)
 - Комбинирование информации (combine)
 - Преобразование информации (transform)

- Извлечение информации:
 - Представьте данные о расходах на поездку
 - Для каждой строки есть timestamp:
 - **1**990-12-01 09:26:03
 - В таком формате эти данные будет сложно подать на вход алгоритма машинного обучения. Многие алгоритмы принимают числовые данные - float или int

- Извлечение информации:
 - Вместо даты мы берём отдельную информацию:
 - **1990-12-01 09:26:03**
 - Год: 1990
 - Месяц: 12
 - Рабочий день или выходной (0 / 1)
 - День недели: пн (1), вт (2), ср (3) и т.д.

- Извлечение информации:
 - Более сложные примеры
 - Текстовые документы
 - Длина текста
 - Как часто встречается то или иное ключевое слово

- Комбинирование информации:
 - Мы уже это делали для полиномиальной регрессии!
 - Вспомните у нас были бюджеты на рекламу по ТВ, радио и в газетах, и мы добавляли слагаемые с умножением отдельных бюджетов.

- Комбинирование информации:
 - Также можно комбинировать извлечённые данные
 - Новый признак:
 - вечер рабочего дня (0 / 1)

- Преобразование информации:
 - Очень часто применяется для текстовых данных
 - Многие алгоритмы не могут работать с текстовыми данными (нельзя умножить слово "красный" на числовой коэффициент)

- Преобразование информации:
 - Категориальные данные часто приходят в текстовом виде
 - Например, в наборе данных может быть указана страна пользователя как строковое значение (USA, UK, MEX, ...)

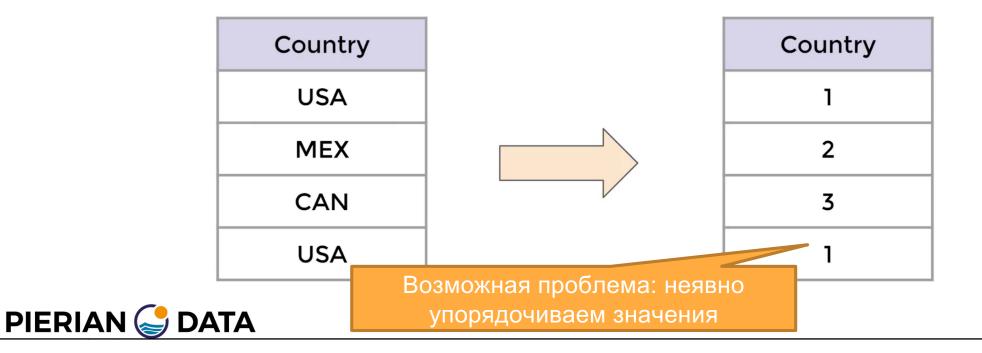
- Преобразование информации:
 - Категориальные данные часто приходят в текстовом виде
 - Например, в наборе данных может быть указана страна пользователя как строковое значение (USA, UK, MEX, ...)
 - Здесь можно применить два подхода:
 - Кодировка числами
 - Кодировка одного значения (dummy-переменные)

- Кодировка числами (integer encoding):
 - Назначаем категориям номера 0, 1, 2, 3 и т.д.

- Кодировка числами (integer encoding):
 - Назначаем категориям номера 0, 1, 2, 3 и т.д.

Country		Country
USA		1
MEX		2
CAN		3
USA		1

- Кодировка числами (integer encoding):
 - Назначаем категориям номера 0, 1, 2, 3 и т.д.



- Кодировка числами (integer encoding):
 - Иногда упорядоченные номера имеют смысл:

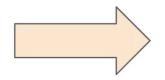
Spice Level	Spice Level
Mild	1
Hot	2
Fire	3
Mild	1

- Кодировка числами (integer encoding):
 - Плюсы:
 - Легко сделать и понять
 - Не увеличивает количество признаков
 - О Минусы:
 - Добавляет упорядоченность между категориями

- Кодировка одного значения (one hot encoding):
 - Для каждой категории создаём отдельный признак (dummy-переменную) со значением 0 или 1

- Кодировка одного значения (one hot encoding):
 - Для каждой категории создаём отдельный признак (dummy-переменную) со значением 0 или 1

Country
USA
MEX
CAN
USA

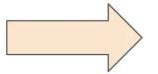


USA	MEX	CAN
1	0	0
0	1	0
0	0	1
1	0	0

- Кодировка одного значения (one hot encoding):
 - Для каждой категории создаём отдельный признак (dummy-переменную) со значением 0 или 1

Значения не упорядочены

Country
USA
MEX
CAN
USA



USA	MEX	CAN
1	0	0
0	1	0
0	0	1
1	0	0

- Кодировка одного значения (one hot encoding):
 - Большое количество дополнительных признаков
 - Имеет смысл брать крупные категории, например регионы вместо отдельных стран

- Кодировка одного значения (one hot encoding):
 - Большое количество дополнительных признаков
 - Имеет смысл брать крупные категории, например регионы вместо отдельных стран
 - В Pandas для этих целей есть функции .map() и .apply()
 - Может понадобится время на выбор оптимального уровня категорий.

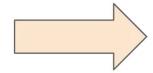
- Кодировка одного значения (one hot encoding):
 - Также нужно помнить про "ловушку dummy-переменных", математически известную как мульти-коллинеарность.
 - Конвертация в dummy-переменные может приводить к дублированию признаков.
 - Давайте рассмотрим простейший пример...

- Кодировка одного значения (one hot encoding):
 - Рассмотрим бинарную переменную (только два значения)

Vertical Direction
UP
DOWN
UP
DOWN

- Кодировка одного значения (one hot encoding):
 - Рассмотрим бинарную переменную (только два значения)

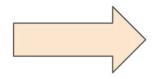
Vertical Direction
UP
DOWN
UP
DOWN



UP	DOWN
1	0
0	1
1	0
0	1

- Кодировка одного значения (one hot encoding):
 - Рассмотрим бинарную переменную (только два значения)
 - Две новые колонки дублируют друг друга (с инверсией)

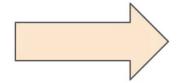
Vertical Direction
UP
DOWN
UP
DOWN



UP	DOWN
1	0
0	1
1	0
0	1

- Кодировка одного значения (one hot encoding):
 - Это применимо и в случае более двух категорий:

Country
USA
MEX
CAN
USA



USA	MEX
1	0
0	1
0	0
1	0

- Кодировка одного значения (one hot encoding):
 - О Плюсы
 - Не добавляется упорядоченность категорий
 - О Минусы
 - Добавляется много дополнительных признаков и коэффициентов
 - "Ловушка dummy-переменных"
 - Сложнее добавлять новые категории

- В этом разделе курса мы рассмотрим:
 - Выбросы в данных (outliers)
 - Отсутствующие данные (missing data)
 - О Категориальные данные
- Не все эти задачи являются "конструированием признаков", часть из них это "очистка данных".

- Имейте ввиду, что в общем случае конструирование признаков зависит от данных и контекста.
- Не существует единого решения на все случаи жизни!

Работа с выбросами (outliers)

- Часто в данных есть несколько точек, экстремально отличающиеся от всех других точек.
- Зачастую лучше просто удалить эти точки из набора данных, чтобы получить более удачную модель

- Какое значение считать выбросом (outlier)?
 - О Диапазоны и лимиты
 - Процент строк данных
 - И то, и другое очень зависит от конкретной ситуации!

- Какое значение считать выбросом (outlier)?
 - Диапазоны и лимиты
 - Мы должны решить, что считать выбросом, на основе некоторой методологии:
 - Интерквартильный диапазон
 - Среднеквадратичное отклонение
 - Визуализация или знания о природе признака

- Какое значение считать выбросом (outlier)?
 - Процент строк данных
 - Если большой процент строк выглядит как выбросы, то это просто широкий диапазон возможных значений признака
 - Процент выбросов не должен превышать максимум нескольких процентов

- Какое значение считать выбросом (outlier)?
 - Полезно визуализировать данные, чтобы увидеть точкивыбросы
 - Имейте ввиду, что это может привести к погрешностям в будущей модели (например, модель не подходит для домов дороже \$10 миллионов).

Работа с выбросами в данных (outliers)

- Имейте ввиду, что не существует на 100% корректной методики определения точек-выбросов для всех ситуаций.
- Давайте поищем выбросы в наборе данных Ames!

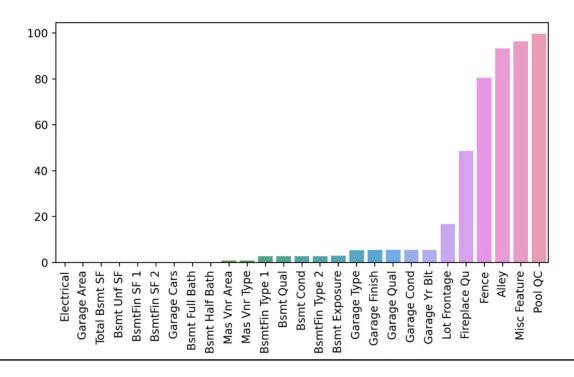
Часть 1: каких данных не хватает

 Пожалуйста убедитесь, что Вы посмотрели лекции "Отсутствующие данные" в разделе Pandas перед тем, как продолжить просмотр этой лекции.

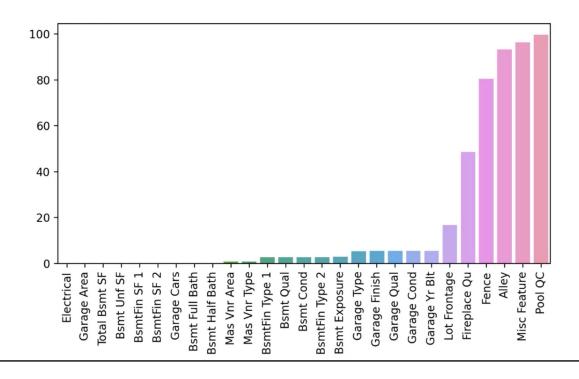
- Пожалуйста убедитесь, что Вы посмотрели лекции "Отсутствующие данные" в разделе Pandas перед тем, как продолжить просмотр этой лекции.
- Мы будем работать с набором данных Ames. В этой лекции мы выясним, каких данных не хватает – сколько и каких именно.

Часть 2: заполнение данных по строкам

• Ранее мы посчитали процент отсутствия данных для каждой колонки с признаками.



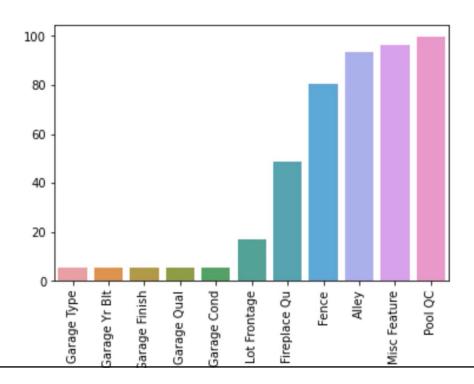
 Для начала рассмотрим те колонки, где процент маленький.



- Если данных нет всего в нескольких строках, то можно:
 - либо удалить эти несколько строк
 - либо заполнить их каким-то средним значением, учитывая наши знания об этой колонке.
- Давайте перейдём в блокнот и посмотрим

Часть 3: заполнение данных по колонкам

 Возьмём колонки, где процент отсутствия данных выше порогового значения 1%



- Два подхода:
 - Заполнить колонки некоторыми значениями
 - Удалить такие колонки
- Рассмотрим плюсы и минусы каждого из подходов...

- Подход "удалить такие колонки":
 - Очень просто сделать
 - Не нужно больше беспокоиться об этих признаках
 - Но мы можем потерять признак с важными данными
 - Удалять колонки имеет смысл, когда много строк имеют значения NaN

- Подход "заполнить каким-то значением":
 - О Потенциально меняем истинность исходных данных
 - Мы сами должны выбрать способ, какое значение записать
 - Нужно будет применять трансформации для всех будущих данных

- Подход "заполнить каким-то значением":
 - Простой случай
 - Заменить значения NaN на нули, если по факту неопределённые значения это нулевые значения
 - Сложные случаи
 - Применяем статистические методы с использованием других колонок, чтобы заполнить значения NaN

- Подход "заполнить каким-то значением":
 - Статистический метод
 - В наборе данных не хватает информации о возрасте
 - Мы можем использовать информацию о текущей работе или образовании, чтобы по ним заполнить возраст (например, если сейчас человек учится в колледже, то записать возраст 20 лет)

- Давайте рассмотрим оба метода!
 - Важное замечание:
 - В наборе данных Ames большинство значений NaN можно корректно заменить значениями 0. Но мы рассмотрим разные методы, чтобы изучить их!

Работа с категориальными данными

Работа с категориальными данными

- Мы сразу перейдем к работе в блокноте.
- Убедитесь, что Вы полностью посмотрели первую лекцию этого раздела – в ней мы обсуждаем dummy-переменные и технику "one hot encoding".

